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Abstract - The report deals with the possible 
implications of pressure diffusion for shocks in one 
dimensional traveling waves in an ideal gas. From 
this new hypothesis all aspects of such shocks can be 
calculated except shock thickness. Unlike conven- 
tional shock theory, the concept of entropy is not 
needed or used. Our analysis shows that temperature 
rises near a shock, which is of course an 
experimental fact; however, it also predicts that very 
close to a shock, density increases faster than 
pressure. In other words, a shock itself is cold. 

1. Introduction 

In inviscid flow theory, fluid acceleration arises from 
dv a gradient of pressure by p(z-g)--Vp ; here we reverse 

dv this idea and regard - p ( z - g )  instead, as a pseudo-pressure 

gradient which arises from acceleration. Thus in this 

unconventional approach, pressure is regarded as a special 

type of energy density, the gradients of which contribute to 

fluid accelerations. As a type of energy density, pressure 

might diffuse (not a violation of energy conservation) 

and we postulate that it does s o  at a rate determined by the 

dv difference between Vp and - p (  z - 8 )  , that is, at a rate 
dv V*[n(Vp+p(z-g))], where K is a coefficient of diffusion. 

For viscous fluids this diffusion term is generally non- 

zero. In the absence of accelerations, pressure gradients 
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would undergo Laplace diffusion. 

The implications of the concept of pressure diffusion 

for fluid dynamics seem quite general. Pressure diffusion 

might be a prominent factor in the irreversibility of 

compression or expansion of an ideal gas, a fundamental 

phenomenon which conventional fluid dynamics is unable to 

explain or predict from first principles without recourse to 

ad hoc extreme increases in a poorly understood thermodynamic 

term, the second coefficient of viscosity [ l ,  pp. 3 0 4 - 3 0 8 1 .  

Furthermore, pressure diffusion is consistent with the 

experimental observation that the speed of sound in C02, N20 

and SO2 at 1E5 Pa and 3 1 3 "  K increases with frequency [ 2 ] .  

In fact the coefficient of pressure diffusion IC (taken, like 

all other thermodynamic terms in this report, as a function 

of density p and pressure p) for air near standard conditions 

can be estimated from such experimental data [ 3 ]  to be 

300 m2/sec. 

In this new approach to fluid flow modeling, the state 

variables of the model are density p ,  the three velocity 

components in the vector v ,  and pressure p. To the usual 

a and Navier-Stokes mass conservation equation for 

av is added to new momentum conservation equation for 

equation for 

an energy conservation equation in which pressure diffusion 

is present as a term and from specification of an internal 

energy function for the fluid. 

at 

at 
The pressure equation can be derived from at - 
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2 .  Fundamental Equations 

The fundamental equations of Newtonian fluid dynamics 

with pressure diffusion are [l, pp. 2 ,  47-49] 

&--,a at ( p v )  (1) 

and 

- av -- (v*V)v+p-' [ -Vp+pV2v+(r+?)VD at 

( 2 )  
+(M+M*)Vp-sDVp+DVr]+g 2 

Here p is dynamic viscosity; r is the second coefficient of 

viscosity; M is the matrix with (av,/axj) in row i, column 

j ;  M* denotes the transpose of M, the matrix with (av,/ax,) 

in row i, column j; and g is a constant gravitational 

acceleration vector. Obviously we require that p and r are 

differentiable functions of p and p. Dilation D is the trace 

of the matrix M, that is D=tr(M)-%M,,. Implicit in ( 2 )  

is the assumption that a special property of the energy 

c =  

density p is that the gradient Vp contributes to av Bt. 

In this report a fluid is regarded as a continuum of 

matter which can be completely described by its density p 

velocity v and pressure p. A fluid is presumed to change 

with time in such a manner that matter and momentum are 

conserved; thus use will be made of two of the familiar 

Navier-Stokes equations (1) and ( 2 ) .  Density, velocity, and 

pressure dynamics can then be predicted provided an equation 

&E in terms of density, velocity and pressure for 

(including the spatial gradients thereof) can be obtained. 

at 
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3 .  

This is done in the next section. Indeed it is shown that 

- v Vp - B D+ ( p h )  - [ [ p t r ( M ( M+M* ) ) + ( - $p ) D2 
at aP 

+V*(TVT)+V* [n(Vp+p(z)-g) 1 1 1  ( 3 )  

where T is temperature (a function of p and p), T is a heat 

diffusion coefficient, n is a pressure diffusion coefficient, 

and B is the bulk modulus of elasticity (all functions of p 

and p). Throughout we assume that p and p always have 

positive values and that the parameters u, p ,  I, T and IC are 

analytic functions of p and p; these parameters are all non- 

is assumed positive. If n=O, then ( 3 )  negative and - 
reduces to a well known but seldom used energy conservation 

equation [ 4 ,  p. 3 3 1 .  

au 
aP 

Derivation of the Pressure Equation 

The region R of flow will be assumed to be finite 

although possibly changing with time and for which at each 

time a general version of Gauss' Divergence theorem holds. 

The boundary d R  of R must change smoothly with time and at 

each time 6'R must be a closed oriented surface with an 

outward pointing normal vector field n defined uniquely 

almost everywhere. It follows that for any smooth vector 

field F over R ,  

1 V*F dV - 1 Fan dA. 
R a R  

Let us regard R as partitioned into a large number of small 

cubical cells, each with edge length 1 .  
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A standard expression of conservation of energy in 

Newtonian fluids [ 4 ,  p. 331  is 

2 a (pu+%pv*v)--V* [ (pu+p+%pv*v)v]+V* [ (c-p)Dv at 

+p(M+M*)v]+V*(rVT)+pg*v ( 4 )  

The term -V*[(pu+p+%pv-v)v] arises from the rate of energy 

carried by fluid flow through the walls of a fixed cell, 

namely (pu+p+%pv*v)v.n, where n is the outward normal 

vector of the cell. The fluid carries energy as internal 

energy per unit volume pu and kinetic energy density %pv*v. 

The rate of work through cell walls by viscous forces results 

in the next term. The term V*(rVT) arises from the flow 

of energy through the cell walls by the conduction of heat, 

and pg*v is, of course, the contribution of gravitational 

force to the rate of change of energy in the cell. 

Pressure is the result of a force per unit area. In 

the presence of acceleration, a momentum change can be 

equated with a force. Thus if a fluid accelerates through 

the wall of a cubic cell of edge length R,the pseudo pressure 

generated by the momentum change (force) is p R 3  (--g)/R2, 

including the effect of gravity. Discounting gravity, the 

dv 
dt 

pseudo pressure gradient (between two such cubes which share 

a face) generated by the momentum change is p ( -  

the net rate of pressure diffusion in general form is taken 

to be V*[n(Vp+p(~-g))], where IC is a diffusion parameter. 

This term is thus added to the list of power flux summands on 

the right-side of ( 4 )  to yield 

dv dt-g). Thus 

dv 
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~ ( ~ ~ + ~ ~ ~ ~ V ) = - V * [ ( ~ U + ~ + ~ ~ V . V ) V ] + V * [ ( ~ - ~ ~ ) D V + ~ ( M + M * ) V ]  a 2 
at 3 

dv 
dt (4a) +V*(7VT)+pg*~+V*[n(Vp+p(--g))] 

combining ( 2 )  and (4a) leads to 

pz--pD+ptr[M(M+M*)]+(C-p)D2 du 2 

dv 
+ v * ( 7 v T > + v * [ n ( v p + p ( ~ - g ) ) l  (5) 

since 

and 

that is, at' we can use (5) to solve for 

&=-v*Vp+(E)-' at [p&-E]D+(pe)-l aP P [ptr(M(M+M*)) 

(6) 

If we can show that the bulk modulus of elasticity B = p ( & ) , ,  

where s is entropy [4, pp. 1651 can be written in terms of 

+ ( c - ~ ) D ~ + v .  2 (~vT)+v. [K(vp+p(e-g)) 1 1  
dt 

8P 

the internal energy u of the fluid by the relation 

then making use of this relation into equation (6), one 

obtains equation ( 3 ) .  This is shown as follows. 

Generally u-u(p,p). If specific entropy is held 

constant, then we may write p=f(p) and 

&) Recall that p-p ( is a consequence of the Gibbs equation 
aP 

du = Tds+p-2pdp. It follows that 

and s o  
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as claimed. In fact (7) can be used to define B without 

reference to entropy. Thus the concept of entropy is not 

essential in describing the dynamics of Newtonian fluids. 

3 .  One-Dimensional Flow 

For one-dimensional fluid flow, the equations (l), ( 2 )  

and ( 3 )  reduce to 

where 7-1 is a positive constant. 

A traveling wave moving in x-direction with speed c is a 

solution of (l), ( 2 )  and ( 3 )  in which each of p ,  v and p can 

be written as a function of the waveform parameter y-x-ct. 

Taking g-0 and 7 ' 0 ,  the conservation law equivalents of ( 8 ) ,  

(9) and (10) are 

Denoting the conditions before and after shock with 
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4 .  

subscripts 1 and 2 respectively, (ll), (12), (13) yield 

Pl(V1-c) = P2(V2-C) ( 1 4 )  

A s  mentioned before, a traveling wave moving in x- 

direction with speed c is a solution of (l), ( 2 ) ,  ( 3 )  in 

which each of p ,  v and p can be written as a function of the 

waveform parameter y-x-ct. The waveforms of such a wave 

differ from those derived from conventional theory. Hence 

an alternative to the Rankine-Hugoniot equation [ 4 ,  p.3171 

may be desirable. From (14), (15), (16) one can show that 

( u , + P , P 2 ) - ( u , + P , P , ) - ~ ( P 2 - P 1 ) ( P ~ 1 + p ; 1 ) + ~ ( ~ ~ 1 - ~ ~ 1 )  

When v2=r71-0 and n-0,  (17) reduces to the conventional 

equation. 

Proposed Continuation of this Research 

The assumption of pressure diffusion leads to seemingly 

realistic waveforms for one dimensional traveling waves with 

shocks. However, an accompanying mechanism for calculating 

waveforms through a shock remains to be devised. 

If, as indicated above, a shock is very cold, metastable 

phase transition phenomena might be involved and a local 

alternative specification of internal energy u(p,p) must be 



. 

9 

made. A first step is the use of the Van der Waals gas 

model. The internal energy differential for a Van der Waals 

gas is 

d u  = 

The proposed continuation of this research involves 

use of the pressure diffusion theory to devise a means of 

calculating p ,  v, and p values through a shock ( conserving 

mass, momentum and energy) starting with du as given by (18). 
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